Renewable Energy Engineering Optimization

Abstract

The purpose of this study is to reduce the cost of renewable energy and increase energy production using the latest artificial intelligence optimization techniques.

Date
Nov 22, 2023 2:46 AM — 2:49 AM
Location
Wesoft Company Ltd. & University of Toyama

Details are as follows: Renewable Energy

Participating Researchers:

Haichuan Yang 楊海川

Yifei Yang 楊逸飛

Xiaosi Li 李小司

Zihang Zhang 張子航

Published Journals:

  1. Yang, H., Yu, Y., Cheng, J., Lei, Z., Cai, Z., Zhang, Z., & Gao, S. (2022). An intelligent metaphor-free spatial information sampling algorithm for balancing exploitation and explorationKnowledge-Based Systems250, 109081.
  2. Yang, H., Gao, S., Lei, Z., Li, J., Yu, Y., & Wang, Y. (2023). An improved spherical evolution with enhanced exploration capabilities to address wind farm layout optimization problem. Engineering Applications of Artificial Intelligence, 123, 106198.
  3. Lei, Z., Gao, S., Zhang, Z., Yang, H., & Li, H. (2023). A Chaotic Local Search-Based Particle Swarm Optimizer for Large-Scale Complex Wind Farm Layout Optimization. IEEE/CAA Journal of Automatica Sinica, 10(5), 1-13.
  4. Yu, Y., Zhang, T., Lei, Z., Wang, Y., Yang, H., & Gao, S. (2023). A chaotic local search-based LSHADE with enhanced memory storage mechanism for wind farm layout optimization. Applied Soft Computing141, 110306.
  5. Zhang, Z., Yu, Q., Yang, H., Li, J., Cheng, J., & Gao, S. (2024). Triple-layered chaotic differential evolution algorithm for layout optimization of offshore wave energy converters. Expert Systems with Applications239, 122439.
Haichuan Yang 楊海川
Haichuan Yang 楊海川
assistant professor

My research interests include meta-heuristic algorithms, artificial neuron model and complex systems.